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ABSTRACT 

A kind of K+-Aronszajn tree is used to construct some strong negative partition 
relations on K ÷. 

A tree T is A-Aronszajn itt T has height )~, has levels of size < A, but has no 

chains of size A. If T is the union of < K antichains then T is called K-special. In 

this note (without loss of generality) our trees will always have the property that 

different points of the same limit level have different sets of predecessors. T is 

called a 0-Cantor tree iff height(T) = y + 1 for some cardinal y =< 0, the first y 

levels of T have size -<_ 0, but the last level of T has size > 0. In this note we give 

some applications (announced in [11]) of the following two results from [10; §4] 

and [12; §8], respectively. 

THEOREM 1. Assume  K > co and DK. Then there is a K-special ~+-Aronszajn 

tree with no )t -Aronsza jn  nor O-Cantor subtrees ]:or any regular A ~ K + and infinite 

O. 

THEOREM 2. Assume  cfK = ~o and [3~. Then there is an order type d) o]: size K + 

with a dense set of size K such that every (o' <= rb of  size <- K is the union of 

countably many  well ordered subtypes. 

Let us say a few words about the proofs of Theorems 1 and 2. The tree T of 

Theorem 1 consists of certain well-ordered subsets of O~, where OK is the set of 

all functions from co into K which are eventually equal to 0. Each element of T 

has a maximal element. The construction of T is as canonical as possible (using 

5 , )  and this canonicity is used in showing that T has no A-Aronszajn nor 

0-Cantor subtrees of smaller heights. The type ~b of Theorem 2 is equal to 
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tp(L, < ) where L is a certain subset of ~K of size K + and < is the lexicographical 

ordering of ~K. The set L is constructed inductively together with maps which 

guarantee that any K C_ L of size < K is the union of < No well-ordered subsets. 

The tree T of Theorem 1 cannot be constructed in ZFC or ZFC + GCH ([10; 

§4]). The assumption cf K = to in Theorem 2 is easily seen to be necessary. It is 

also known that such an orde:r type cannot be constructed in ZFC + GCH ([1]). 

Almost all of our applications of Theorem 1 and 2 are motivated by problems 

from the Erd6s-Hajnal list [3; Problems 17, 19, 62] (see also [4]). We shall use 

the tree of Theorem 1, among other things, in stepping-up negative square- 

bracket partition relations. This stepping-up seems to be rather different from 

the classical one ([5]) which uses trees of height K with > K cofinal branches. 

We begin with two applications of Theorem 2. Let ~b be the order type which 

satisfies the conclusion of thins theorem. Since d(th) = K, ~b can be represented as 

tp(Y, C_ ) where ~ is a chain of subsets of K. Using the third property of ~b it is 

easily seen that f f  is a K-Kurepa family, i.e., ] ~ [  > K, but I{F n x :  F ~ ~-}1--< 
[ X I for any infinite X _C K Of size < K. Thus we have the following result which 

should be compared with [3; Problem 19El: 

THEOREM 3. I f  cf K = to, then D,  implies KH .... 

Concerning this result, let us note that K. Prikry ([8]) has previously shown 

that V = L implies KH,.~ when cf K = tO. It is unknown whether GCH implies 

KH~,~ for K = 1~. 

Again let 4> = tp(K +, < ) be the type of Theorem 2. Let G C_ [K+] 2 be the 

Sierpifiski graph on ~+ generated by 4', i.e., {a,/3} E G if[ a </3 and a </3. 

Clearly, G satisfies the following theorem which should be compared with [5; 

Problem 7], where [A] * denotes the set {B C A  :]B 1= X}. 

THEOREM 4. Assume cf~c = tO and [-]~. Then there is a graph G C_ [K+] z such 

that G has no complete subgraph of size K +, but i[ tO < cfA <= A < K and if 

A E[K+] *, then [B]2C_ G for some B ~ [A]*. 

From now on we shall be using the K+-Aronszajn tree of Theorem 1. It is 

easily seen that if there is any such a tree then there is one which is an initial 

segment of -~*2. So from now on we shall assume that any K +-Aronszajn tree with 

no Aronszajn nor Cantor subtrees of smaller heights we are working with is an 

initial segment of ~+2. Such a tree, in short, will be called a "nice" K*-Aronszajn 

tree. So if T is a nice K*-Aronszajn tree then for every s, t ~ T we can define s ^ t 

to be the greatest lower bound of s and t. The property of nice K+-Aronszajn 

trees we shall use is the following. 
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LEMMA 1. Let T be a nice K+-Aronszajn tree, and let A C T have regular 

cardinality A <= K. Then there are sequences (s~ : a < A ) and (t~ : c~ < A ) from A 

and T, respectively such that so ^ s, = t. [or all ~ </3 < A. 

PROOF. Let S be the set of all s in T such that for all i < 2 ,  s ni has an 

extension in A. Then S is a rooted at most 2-splitting subtree of T of size A. By 

restricting S to its first A levels we may assume that S has height =< A. Levels of S 

must all have size < A since otherwise, by considering minimal A -sized level of 

S, we get a 0-Cantor subtree of T. Since S cannot be A-Aronszajn it must have a 

A-branch which is just what is needed in Lemma 1. 

Note that the conclusion of Lemma 1 implies t, C t~ for a </3 < A and that 

the fact that T is K+-Aronszajn is not used. The conclusion of the lemma is, in 

fact, equivalent to saying T contains neither Aronszajn nor Cantor subtrees of 

smaller heights. 

To mention our next application we need to define two partition symbols of 

Erd6s, Hajnal and Rado ([5], [3]). The symbol K ~[A,}~<o means that, for every 

f : [ K ] ' ~ 0  there are so<0 and A C[K] ~, such that ~C_f"[A] r. The symbol 

K~[A];.<,. means that for every f : [ K } r ~ 6 ,  there exists A ElK]" such that 

I f " [ A ] ' l <  e. Finally, K~[A]~,, means K-->IA];,<~+. 

THEOREM 5. [--]~ implies K'74[A]~,,<~ for every A <: K. 

PROOF. Let T be a nice K-special K+-Aronszajn tree. It suffices to find a 

partition f :  [T]~---> K which witnesses K+76[A]2~,<~ for all regular A-< K. Let 

~ r : T ~ K  be a specializing map, i.e., ~r(s)P o'(t) for s Ct. Let 

f({s, t } ) :  o-(s ^ t). 

Using Lemma 1 it follows directly that f is as required. 

Note that the partition f witnesses K+74 [A]~,,<~ for all A -_< K, simultaneously. 

This should be compared with [5; p. 156] and [3; Problem 19]. 

In [2] Chang proved that Vn < wKH ..... implies ~t~ 74[~t~]~, i.e., there is an 

~L-J6nsson algebra. Using Aronszajn trees instead of Kurepa trees in Chang's 

proof we get the following. 

THEOREM 6. Assume  [q,o. holds for all n < to. Then No, 74 [1% ]~,~. 

Now we are going to use nice K-special K +-Aronszajn trees to step-up negative 

square bracket partition relations, thereby commenting on Problem 17 from [3]. 

For K and A cardinals, K ~- A denotes the cardinal sum of r and A. We shall need 

the following lemma which is proved by an easy induction on r. 
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LEMMA 2. Let T be a nice K÷-Aronszajn tree, let 1 <= r < to and let A ~ [T]  r. 

Then p ( A  )=  {s ^ t : s, t E A and s /  t} is a subset of T of  size <= r - 1 .  

THEOREM 7. Assume  D~. Let  1 < r < co and A t, ~ < 0 be cardinals <- K such 

that all of them except possibly Ao are regular and infinite. Then 

K74[At]~o implies K+74[A~-[-1]~<'o. 

PROOF. Let  g : [K ]r.__> 0 be a witness of K 74 [A~ ]~<o. Let  T be a nice K-special 

K+-Aronszajn tree. We shall find a part i t ion f:[T]r+~--~O which witnesses 

K+74[&-[-1]~.+~,. Let  t r : T ~ . K  be a specializing map and let < be a well- 

order ing of T. Let  

t ~ } < ) = I s  c if t()^t, C t , ^ t : C . . . C t ,  l^t~ and g(cr"p{to . . . . .  t ,} )=~,  
f({t,, [0 otherwise.  

Assume first by way of contradict ion that for  some A C T, I A I = A()~- 1 and 

0 f~ f " [A  ] ' " .  Let  (t~ : i < A,)-i- 1) be the < -increasing enumera t ion  of A. Then  by 

the definition of f, we have t~ ^ t ~  C t ~  ^ t~,2 for every i < A o -  1. Let  s~ = t~ ^ t,+~ 

for i < A,,. Then  C = {s~ : i < A,,} is a chain of T of size At), and so B = o-"C is also 

of size A,,. Note  that every  e lement  of [B]r is equal to cr"p(X)  for some 

X E [A] '~]. Hence  0 C g"[B] ' ,  a contradict ion.  

Assume now that for some 0 <  ~ < 0 and A E [T]  ~,, we have ~ f f f " [ A ]  ~÷~. By 

L e m m a  1 there  exist < -increasing sequences  (s. : a < At) and (t, : a < At) of A 

and T, respectively so that s,, ^ s~ = t,, for every  a < /3  < &. Let  B = o-"{t~ : a < 

A~}. Then  it is easily seen thai every e lement  of [B] ~ is equal to o-"p(X) for some 

X ~ [A]~+'. Hence  ~: ff g"[B ]', which is a contradict ion since IBI= ~t follows 

from the facts that {t. :~  < At} is a chain and or is a specializing map. This 

completes  the proof.  

Using the above methods  one can also s tep-up some special proper t ies  of 

parti t ions of [K]~. So we can also get analogues of T h e o r e m s  2.6 and 2.7 of [10]. 

Let  us now give a typical application of T h e o r e m  7. 

THZOREM 8. ( V = L ). Let: K be a regular non-weak ly  compact  cardinal. Then 

[or every n < to and 3 <= r < to 

K("'+74[~]~ ': and K c ~ ' + 7 4 [ r + n + l , ( K ) , ]  "÷°. 

PROOF. K~")+74[K]~+-" is obta ined by stepping-up the relat ion K74[KI:~ which 

holds in L by results of Shore [9] and Jensen [7]. The  second relat ion is obta ined  

by stepping-up the relation K 74 [r + 1, (K), ]' which holds in L by the following 
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proposition and a result of Jensen [7] which says that for every regular 

non-weakly compact cardinal K there is a K-Suslin tree. 

THEOREM 9. Assume K is regular and there is a K-Suslin tree. Then 

K-/,  [r + 1,(K)~] r forevery 3 N r  <to. 

PROOF. Let T = (K, =<r ) be a K-Suslin tree so that a <r/3 implies a < fl, and 

so that for every a E T, the set S~ of all immediate successors of a in T has 

order type _-> a. Let 7r~ :S~--*On be the collapsing map. Let {al . . . . .  err}< be 

given. If for some/3 E T, a l < r / 3  we have/3 = cri ^ a j ¢  a~,aj for all 2 _-< i / j  < r, 

then we let 

f({a, . . . . .  a ,})= 7ro,(~,), where {~} = {s~ ~ r:~<=Tfl}f3 S~ 1. 

Otherwise, let f({a, . . . . .  at}) = 0. 

Since T is K-Suslin any A E [T] ~ is dense in a K-sized cone of T, so for any 

0 < ~ < K there is an X E [A ]' such that f ( X )  = ~. But given any set B C_ T of 

size r + 1 there must be an element X of [B] '  such that f ( X )  = 0. This shows that 

f witnesses K74[r + 1,(K)~] ~. 

Concerning Theorems 8 and 9 let us mention that Hajnal [6] has shown that 

K ~ ( r + I , K ) '  for some r_-->3 is already enough to imply that K is a weakly 

compact cardinal. 

Let us conclude this paper with a remark concerning the assumption [5]~ in 

Theorems 5 and 7. Chang's Conjecture (CC) is the assertion that any first order 

structure of the form (~o2,w~ . . . .  ) for countable language has an elementary 

substructure (B,B Cl w~,.. .)  such that [ B [ = I~ and { B f-/w~ I = 1~o. It is well- 

known that CC is equivalent to N_.--* [l,l~]~,,.,,,. So by Theorem 5 we have that CC 

implies --1F]~,. On the other hand a well-known result of J. Silver says that CC is 

consistent with ZFC + GCH. Thus the conclusion of Theorem 5 does not follow 

from GCH. Clearly CC implies N2---~ [~]3 , hence the conclusion of Theorem 7 is 

not provable in ZFC + GCH since CH implies 1,I,74 [l,l~]~,, ([5]). An unpublished 

result of R. Laver says that, in fact, N:---~ [N~] 3, is equivalent to CC if CH holds. 

Note that K ~ [A~];<o makes sense even if K and Ae's are just ordinal numbers 

not necessarily initial. The proof of Theorem 7 shows clearly that we can restate 

this result in the following form: Assume K is a cardinal for which [--]~ holds. Let 

1 _<- r < ~o and let A~, ~: < 0 be ordinals <= K such that all of them except possibly 

Ao are regular and infinite. Then 

K74[A~]~<0 implies K+74[Ao+l,(A~ ~-D~-<~<olv+' 

where Ao + 1 is the ordinal sum of )to and t. Thus, for example, if we assume 1-1~° 
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for all n < o~, then we can step up the well known CH-consequence 

,o. l + 2, (o 1)..12 

of A. Hajnal  to obtain 

w,÷l-A[~o+n+2,(o~l) . , ]  "+z for all n < ~o. 

This solves a recent problem of A. Hajnal  and P. Komj~ith. 
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