ARONSZAJN TREES AND PARTITIONS

BY

STEVO TODORCEVIC

Department of Mathematics, University of Colorado, Boulder, CO 80309, USA; and Department of Mathematics, University of California, Berkeley, CA 94720, USA

ABSTRACT

A kind of κ^* -Aronszajn tree is used to construct some strong negative partition relations on κ^+ .

A tree T is λ -Aronszajn ift T has height λ , has levels of size λ , but has no chains of size λ . If T is the union of $\leq \kappa$ antichains then T is called κ -special. In this note (without loss of generality) our trees will always have the property that different points of the same limit level have different sets of predecessors. T is called a θ -Cantor tree iff height(T) = γ + 1 for some cardinal $\gamma \leq \theta$, the first γ levels of T have size $\leq \theta$, but the last level of T has size $> \theta$. In this note we give some applications (announced in [11]) of the following two results from [10; §4] and [12; §8], respectively.

THEOREM 1. Assume $\kappa \geq \omega$ and \Box_{κ} . Then there is a κ -special κ^+ -Aronszajn *tree with no* λ *-Aronszajn nor* θ *-Cantor subtrees for any regular* $\lambda \neq \kappa^+$ *and infinite O.*

THEOREM 2. *Assume* $cf \kappa = \omega$ *and* \Box_{κ} . Then there is an order type ϕ of size κ^+ *with a dense set of size* κ *such that every* $\phi' \leq \phi$ *of size* $\leq \kappa$ *is the union of countably many well ordered subtypes.*

Let us say a few words about the proofs of Theorems 1 and 2. The tree T of Theorem 1 consists of certain well-ordered subsets of Q_{κ} , where Q_{κ} is the set of all functions from ω into κ which are eventually equal to 0. Each element of T has a maximal element. The construction of T is as canonical as possible (using \Box_{κ}) and this canonicity is used in showing that T has no λ -Aronszajn nor θ -Cantor subtrees of smaller heights. The type ϕ of Theorem 2 is equal to

Received April 24, 1983 and in revised form January 22, 1985

tp(L, \lt) where L is a certain subset of " κ of size κ^+ and \lt is the lexicographical ordering of α . The set L is constructed inductively together with maps which guarantee that any $K \subset L$ of size $\leq \kappa$ is the union of $\leq \aleph_0$ well-ordered subsets.

The tree T of Theorem 1 cannot be constructed in ZFC or $ZFC + GCH$ ([10; §4]). The assumption cf $\kappa = \omega$ in Theorem 2 is easily seen to be necessary. It is also known that such an order type cannot be constructed in $ZFC + GCH (1)$.

Almost all of our applications of Theorem 1 and 2 are motivated by problems from the Erdös-Hajnal list $[3;$ Problems 17, 19, 62] (see also $[4]$). We shall use the tree of Theorem 1, among other things, in stepping-up negative squarebracket partition relations. This stepping-up seems to be rather different from the classical one ([5]) which uses trees of height κ with $>\kappa$ cofinal branches.

We begin with two applications of Theorem 2. Let ϕ be the order type which satisfies the conclusion of this theorem. Since $d(\phi) = \kappa$, ϕ can be represented as tp(\mathcal{F} , \subset) where \mathcal{F} is a chain of subsets of κ . Using the third property of ϕ it is easily seen that $\mathcal F$ is a κ -Kurepa family, i.e., $|\mathcal F| > \kappa$, but $|\{F \cap X : F \in \mathcal F\}| \leq$ $|X|$ for any infinite $X \subseteq \kappa$ of size $\leq \kappa$. Thus we have the following result which should be compared with [3; Problem 19El:

THEOREM 3. If $cf \kappa = \omega$, then \Box_{κ} implies $KH_{\kappa,\kappa}$.

Concerning this result, let us note that K. Prikry ([8]) has previously shown that $V = L$ implies $KH_{\kappa,\kappa}$ when cf $\kappa = \omega$. It is unknown whether GCH implies $KH_{\kappa,\kappa}$ for $\kappa = \aleph_{\omega}$.

Again let $\phi = tp(\kappa^+, \leq)$ be the type of Theorem 2. Let $G \subseteq [\kappa^+]^2$ be the Sierpiński graph on κ^+ generated by ϕ , i.e., $\{\alpha, \beta\} \in G$ iff $\alpha < \beta$ and $\alpha < \beta$. Clearly, G satisfies the following theorem which should be compared with [5; Problem 7], where $[A]^{\lambda}$ denotes the set $\{B \subseteq A : |B| = \lambda\}.$

THEOREM 4. *Assume* $cf \kappa = \omega$ and \Box_{κ} . Then there is a graph $G \subseteq [\kappa^+]^2$ such *that G has no complete subgraph of size* κ^+ , *but if* $\omega < c f \lambda \leq \lambda \leq \kappa$ *and if* $A \in [\kappa^+]^\lambda$, *then* $[B]^2 \subseteq G$ *for some* $B \in [A]^{\lambda}$.

From now on we shall be using the κ^+ -Aronszajn tree of Theorem 1. It is easily seen that if there is any such a tree then there is one which is an initial segment of s^* 2. So from now on we shall assume that any κ^* -Aronszajn tree with no Aronszajn nor Cantor subtrees of smaller heights we are working with is an initial segment of s^2 . Such a tree, in short, will be called a "nice" κ^* -Aronszajn tree. So if T is a nice κ^* -Aronszajn tree then for every s, $t \in T$ we can define s $\wedge t$ to be the greatest lower bound of s and t. The property of nice κ^* -Aronszajn trees we shall use is the following.

LEMMA 1. Let T be a nice κ^+ -Aronszajn tree, and let $A \subseteq T$ have regular *cardinality* $\lambda \leq \kappa$. Then there are sequences $\langle s_{\alpha} : \alpha \leq \lambda \rangle$ and $\langle t_{\alpha} : \alpha \leq \lambda \rangle$ from A *and T, respectively such that* $s_{\alpha} \wedge s_{\beta} = t_{\alpha}$ for all $\alpha < \beta < \lambda$.

PROOF. Let S be the set of all s in T such that for all $i < 2$, $sⁿi$ has an extension in A. Then S is a rooted at most 2-splitting subtree of T of size λ . By restricting S to its first λ levels we may assume that S has height $\leq \lambda$. Levels of S must all have size $\langle \lambda \rangle$ since otherwise, by considering minimal λ -sized level of S, we get a θ -Cantor subtree of T. Since S cannot be λ -Aronszajn it must have a λ -branch which is just what is needed in Lemma 1.

Note that the conclusion of Lemma 1 implies $t_{\alpha} \subset t_{\beta}$ for $\alpha < \beta < \lambda$ and that the fact that T is κ^+ -Aronszajn is not used. The conclusion of the lemma is, in fact, equivalent to saying T contains neither Aronszajn nor Cantor subtrees of smaller heights.

To mention our next application we need to define two partition symbols of Erdös, Hajnal and Rado ([5], [3]). The symbol $\kappa \rightarrow [\lambda_{\xi}]_{\xi < \theta}^r$ means that, for every $f: [K] \rightarrow \theta$ there are $\xi < \theta$ and $A \in [K]^{k_{\xi}}$ such that $\xi \notin f''[A]$. The symbol $\kappa \rightarrow [\lambda]_{\delta<\epsilon}^r$ means that for every $f:[\kappa]^r\rightarrow \delta$, there exists $A \in [\kappa]^{\lambda}$ such that $|f''[A]'|<\varepsilon$. Finally, $\kappa \to [\lambda]_{\delta,\varepsilon}^r$ means $\kappa \to [\lambda]_{\delta,\varepsilon,\varepsilon^+}^r$.

THEOREM 5. \Box_{κ} *implies* $\kappa^+ \nrightarrow [\lambda]_{\kappa < \lambda}^2$ *for every* $\lambda \leq \kappa$.

PROOF. Let T be a nice κ -special κ^* -Aronszajn tree. It suffices to find a partition $f: [T]^2 \to \kappa$ which witnesses $\kappa^+ \nless [\lambda]^2_{\kappa < \lambda}$ for all regular $\lambda \leq \kappa$. Let $\sigma: T \rightarrow \kappa$ be a specializing map, i.e., $\sigma(s) \neq \sigma(t)$ for $s \subset t$. Let

$$
f(\{s,t\})=\sigma(s\wedge t).
$$

Using Lemma 1 it follows directly that f is as required.

Note that the partition f witnesses $\kappa^+\n⁴ [\lambda]_{\kappa<\lambda}^2$ for all $\lambda \leq \kappa$, simultaneously. This should be compared with [5; p. 156] and [3; Problem 19].

In [2] Chang proved that $\forall n < \omega$ KH_{N_nN_n} implies $\mathbf{N}_{\omega} \not\rightarrow [\mathbf{N}_{\omega}]_{\mathbf{N}_{\omega}}^{< \omega}$, i.e., there is an ~L-J6nsson algebra. Using Aronszajn trees instead of Kurepa trees in Chang's proof we get the following.

THEOREM 6. *Assume* \Box_{ω_n} holds for all $n < \omega$. Then $\mathbf{N}_{\omega} \not\rightarrow [\mathbf{N}_{\omega}]_{\mathbf{N}_{\omega}}^{< \omega}$.

Now we are going to use nice κ -special κ^* -Aronszajn trees to step-up negative square bracket partition relations, thereby commenting on Problem 17 from [3]. For κ and λ cardinals, $\kappa + \lambda$ denotes the cardinal sum of κ and λ . We shall need the following lemma which is proved by an easy induction on r .

56 S. TODORCEVIC Isr. J. Math.

LEMMA 2. Let T be a nice κ^* -Aronszajn tree, let $1 \le r < \omega$ and let $A \in [T]$. *Then* $\rho(A) = \{s \land t : s, t \in A \text{ and } s \neq t\}$ *is a subset of T of size* $\leq r-1$ *.*

THEOREM 7. *Assume* \Box_{κ} . Let $1 \le r < \omega$ and λ_{ξ} , $\xi < \theta$ be cardinals $\le \kappa$ such *that all of them except possibly* λ_0 *are regular and infinite. Then*

$$
\kappa \not\to [\lambda_{\xi}]'_{\xi < \theta} \quad implies \quad \kappa^+ \not\to [\lambda_{\xi} \dotplus 1]_{\xi < \theta}^{r+1}.
$$

PROOF. Let $g : [\kappa] \to \theta$ be a witness of $\kappa \nightharpoonup [\lambda_{\varepsilon}]_{\varepsilon < \theta}$. Let T be a nice κ -special κ^* -Aronszajn tree. We shall find a partition $f:[T]^{r+1}\to\theta$ which witnesses $\kappa^+ \nless [\lambda_{\epsilon} + 1]_{\epsilon-\theta}^{r+1}$. Let $\sigma: T \rightarrow \kappa$ be a specializing map and let \prec be a wellordering of T. Let

$$
f(\lbrace t_0,\ldots,t_r\rbrace) = \begin{cases} \xi & \text{if } t_0 \wedge t_1 \subset t_1 \wedge t_2 \subset \cdots \subset t_{r-1} \wedge t_r \quad \text{and} \quad g(\sigma'' \rho \lbrace t_0,\ldots,t_r\rbrace) = \xi, \\ 0 & \text{otherwise.} \end{cases}
$$

Assume first by way of contradiction that for some $A \subseteq T$, $|A| = \lambda_0 + 1$ and $0 \notin f''[A]^{r+1}$. Let $\langle t_i : i \leq \lambda_0+1 \rangle$ be the \prec -increasing enumeration of A. Then by the definition of *f*, we have $t_i \wedge t_{i+1} \subset t_{i+1} \wedge t_{i+2}$ for every $i < \lambda_0 - 1$. Let $s_i = t_i \wedge t_{i+1}$ for $i < \lambda_0$. Then $C = \{s_i : i < \lambda_0\}$ is a chain of T of size λ_0 , and so $B = \sigma''C$ is also of size λ_0 . Note that every element of [B]' is equal to $\sigma'' \rho(X)$ for some $X \in [A]^{r+1}$. Hence $0 \notin g''[B]'$, a contradiction.

Assume now that for some $0 < \xi < \theta$ and $A \in [T]^{\lambda_{\xi}}$, we have $\xi \notin f''[A]^{r+1}$. By Lemma 1 there exist \prec -increasing sequences $\langle s_\alpha : \alpha \leq \lambda_\xi \rangle$ and $\langle t_\alpha : \alpha \leq \lambda_\xi \rangle$ of A and *T*, respectively so that $s_a \wedge s_\beta = t_a$ for every $\alpha < \beta < \lambda_\xi$. Let $B = \sigma''\{t_\alpha : \alpha <$ λ_{ξ} . Then it is easily seen that every element of [B]' is equal to $\sigma'' \rho(X)$ for some $X \in [A]^{r+1}$. Hence $\xi \notin g''[B]$ ^r, which is a contradiction since $|B| = \lambda_{\xi}$ follows from the facts that $\{t_{\alpha} : \alpha < \lambda_{\ell}\}\$ is a chain and σ is a specializing map. This completes the proof.

Using the above methods one can also step-up some special properties of partitions of κ ^Y. So we can also get analogues of Theorems 2.6 and 2.7 of [10]. Let us now give a typical application of Theorem 7.

THEOREM 8. $(V = L)$. Let κ be a regular non-weakly compact cardinal. Then *for every n* $\lt \omega$ *and* $3 \le r \le \omega$

$$
\kappa^{(n)+} \nrightarrow [\kappa]_{\kappa}^{n+2} \quad \text{and} \quad \kappa^{(n)+} \nrightarrow [r+n+1,(\kappa)_{\kappa}]^{r+n}.
$$

PROOF. $\kappa^{(n)+}$ \neq [κ] κ^{n+2} is obtained by stepping-up the relation $\kappa \neq$ [κ] κ^{2} which holds in L by results of Shore [9] and Jensen [7]. The second relation is obtained by stepping-up the relation $\kappa \rightarrow [r + 1, (\kappa)_\kappa]'$ which holds in L by the following proposition and a result of Jensen [7] which says that for every regular non-weakly compact cardinal κ there is a κ -Suslin tree.

THEOREM 9. Assume κ is regular and there is a κ -Suslin tree. Then $\kappa \nrightarrow [r + 1, (\kappa)_\kappa]'$ *for every* $3 \le r < \omega$.

PROOF. Let $T = \langle \kappa, \leq_T \rangle$ be a κ -Suslin tree so that $\alpha <_T \beta$ implies $\alpha < \beta$, and so that for every $\alpha \in T$, the set S_{α} of all immediate successors of α in T has order type $\ge \alpha$. Let $\pi_{\alpha}: S_{\alpha} \to \mathcal{O}$ n be the collapsing map. Let $\{\alpha_1, \ldots, \alpha_r\}$ be given. If for some $\beta \in T$, $\alpha_1 < \tau \beta$ we have $\beta = \alpha_i \wedge \alpha_j \neq \alpha_i$, α_i for all $2 \leq i \neq j \leq r$, then we let

$$
f(\{\alpha_1,\ldots,\alpha_r\}) = \pi_{\alpha_1}(\gamma)
$$
, where $\{\gamma\} = \{\xi \in T : \xi \leq_T \beta\} \cap S_{\alpha_1}$.

Otherwise, let $f({\alpha_1},..., {\alpha_r}) = 0$.

Since T is κ -Suslin any $A \in [T]^{\kappa}$ is dense in a κ -sized cone of T, so for any $0 < \xi < \kappa$ there is an $X \in [A]$ ' such that $f(X) = \xi$. But given any set $B \subseteq T$ of size $r + 1$ there must be an element X of $[B]$ ' such that $f(X) = 0$. This shows that f witnesses $\kappa \neq [r + 1, (\kappa)]$.

Concerning Theorems 8 and 9 let us mention that Hajnal [6] has shown that $\kappa \rightarrow (r+1,\kappa)'$ for some $r \ge 3$ is already enough to imply that κ is a weakly compact cardinal.

Let us conclude this paper with a remark concerning the assumption \Box_{κ} in Theorems 5 and 7. Chang's Conjecture (CC) is the assertion that any first order structure of the form $\langle \omega_2,\omega_1,\ldots \rangle$ for countable language has an elementary substructure $\langle B, B \cap \omega_1, ...\rangle$ such that $|B| = \mathbf{N}_1$ and $|B \cap \omega_1| = \mathbf{N}_0$. It is wellknown that CC is equivalent to $N_2 \rightarrow [N_1]^2_{N_1,N_0}$. So by Theorem 5 we have that CC implies $\neg\Box_{\omega_1}$. On the other hand a well-known result of J. Silver says that CC is consistent with ZFC + GCH. Thus the conclusion of Theorem 5 does not follow from GCH. Clearly CC implies $N_2 \rightarrow [N_1]^3_{N_1}$, hence the conclusion of Theorem 7 is not provable in ZFC + GCH since CH implies $N_1 \rightarrow [N_1]_{N_1}^2$, ([5]). An unpublished result of R. Laver says that, in fact, $\mathbf{N}_2 \rightarrow [\mathbf{N}_1]_{\mathbf{N}_1}^3$ is equivalent to CC if CH holds.

Note that $\kappa \rightarrow [\lambda_{\xi}]_{\xi<\theta}^{\prime}$ makes sense even if κ and λ_{ξ} 's are just ordinal numbers not necessarily initial. The proof of Theorem 7 shows clearly that we can restate this result in the following form: Assume κ is a cardinal for which \Box_{κ} holds. Let $1 \le r < \omega$ and let $\lambda_{\xi}, \xi < \theta$ be *ordinals* $\le \kappa$ such that all of them except possibly λ_0 are regular and infinite. Then

$$
\kappa \nrightarrow [\lambda_{\xi}]_{\xi < \theta}^r \quad \text{implies} \quad \kappa^+ \nrightarrow [\lambda_0 + 1, (\lambda_{\xi} + 1)_{1 \leq \xi < \theta}]^{r+1}
$$

where $\lambda_0 + 1$ is the ordinal sum of λ_0 and 1. Thus, for example, if we assume \Box_{ω_n}

for all $n < \omega$, then we can step up the well known CH-consequence

$$
\omega_1 \nrightarrow [\omega + 2, (\omega_1)_{\mathbf{x}_1}]^2
$$

of A. Hajnal to obtain

$$
\omega_{n+1} \nrightarrow [\omega + n + 2, (\omega_1)_{\mathbf{N}_1}]^{n+2} \quad \text{for all } n < \omega.
$$

This solves a recent problem of A. Hajnal and P. Komjáth.

REFERENCES

1. S. Ben-David, *On Shelah's compactness of cardinals,* lsr. J. Math. 31 (1978), 34-56.

2. C. C. Chang, *Extensions of ,combinatorial principles of Kurepa and Prikry,* in *Theory of Sets and Topology* (G. Asset, J. Ftachsmeyer and W. Rinow, eds.), VEB Deutscher Verlag der Wissenschaften, Berlin, 1972, pp. 49-57.

3. P. Erd6s and A. Hajnal, *Unsolved problems in set theory,* Proc. Symp. Pure Math. XIII, Part 1, Am. Math. Soc., Providence, RI, 1971, pp. 17-48.

4. P. Erdös and A. Hajnal, *Unsolved and solved problems in set theory*, Proc. Symp. Pure Math. XXV, Am. Math. Soc., Providence, RI, 1974, pp. 267-287.

5. P. Erd6s, A. Hajnal and R. Rado, *Partition relations for cardinal numbers,* Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.

6. A. Hajnal, *Remarks on the theorem of W. P. Hanf,* Fund. Math. 54 (1964), 109-113.

7. R. B. Jensen, *The fine structure of the constructible hierarchy,* Ann. Math. Logic 4 (1972), 229-308.

8. K. Prikry, *Kurepa ' s hypothesis for singular cardinals,* preprint, 1972.

9. R. A. Shore, *Square bracket partition relations in L,* Fund. Math. 84 (1974), 101-106.

10. S. Todorcevic, *Trees, subtrees and order types, Ann. Math. Logic* 20 (1981), 233-268.

11. S. Todorcevic, *Some results in Set Theory 111,* Abstracts Am. Math. Soc. 3 : 2 (1982), 185-186.

12. S. Todorcevic, *Trees and linearly ordered sets,* in *Handbook of Set-Theoretic Topology*

(K. Kunen and J. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp. 235-293.